80 research outputs found

    Magnetic exponents of two-dimensional Ising spin glasses

    Full text link
    The magnetic critical properties of two-dimensional Ising spin glasses are controversial. Using exact ground state determination, we extract the properties of clusters flipped when increasing continuously a uniform field. We show that these clusters have many holes but otherwise have statistical properties similar to those of zero-field droplets. A detailed analysis gives for the magnetization exponent delta = 1.30 +/- 0.02 using lattice sizes up to 80x80; this is compatible with the droplet model prediction delta = 1.282. The reason for previous disagreements stems from the need to analyze both singular and analytic contributions in the low-field regime.Comment: 4 pages, 4 figures, title now includes "Ising

    Zero-temperature behavior of the random-anisotropy model in the strong-anisotropy limit

    Get PDF
    We consider the random-anisotropy model on the square and on the cubic lattice in the strong-anisotropy limit. We compute exact ground-state configurations, and we use them to determine the stiffness exponent at zero temperature; we find θ=0.275(5)\theta = -0.275(5) and θ0.2\theta \approx 0.2 respectively in two and three dimensions. These results show that the low-temperature phase of the model is the same as that of the usual Ising spin-glass model. We also show that no magnetic order occurs in two dimensions, since the expectation value of the magnetization is zero and spatial correlation functions decay exponentially. In three dimensions our data strongly support the absence of spontaneous magnetization in the infinite-volume limit

    Exact Ground States of Large Two-Dimensional Planar Ising Spin Glasses

    Get PDF
    Studying spin-glass physics through analyzing their ground-state properties has a long history. Although there exist polynomial-time algorithms for the two-dimensional planar case, where the problem of finding ground states is transformed to a minimum-weight perfect matching problem, the reachable system sizes have been limited both by the needed CPU time and by memory requirements. In this work, we present an algorithm for the calculation of exact ground states for two-dimensional Ising spin glasses with free boundary conditions in at least one direction. The algorithmic foundations of the method date back to the work of Kasteleyn from the 1960s for computing the complete partition function of the Ising model. Using Kasteleyn cities, we calculate exact ground states for huge two-dimensional planar Ising spin-glass lattices (up to 3000x3000 spins) within reasonable time. According to our knowledge, these are the largest sizes currently available. Kasteleyn cities were recently also used by Thomas and Middleton in the context of extended ground states on the torus. Moreover, they show that the method can also be used for computing ground states of planar graphs. Furthermore, we point out that the correctness of heuristically computed ground states can easily be verified. Finally, we evaluate the solution quality of heuristic variants of the Bieche et al. approach.Comment: 11 pages, 5 figures; shortened introduction, extended results; to appear in Physical Review E 7

    Matching Kasteleyn Cities for Spin Glass Ground States

    Get PDF
    As spin glass materials have extremely slow dynamics, devious numerical methods are needed to study low-temperature states. A simple and fast optimization version of the classical Kasteleyn treatment of the Ising model is described and applied to two-dimensional Ising spin glasses. The algorithm combines the Pfaffian and matching approaches to directly strip droplet excitations from an excited state. Extended ground states in Ising spin glasses on a torus, which are optimized over all boundary conditions, are used to compute precise values for ground state energy densities.Comment: 4 pages, 2 figures; minor clarification

    Negative-weight percolation

    Full text link
    We describe a percolation problem on lattices (graphs, networks), with edge weights drawn from disorder distributions that allow for weights (or distances) of either sign, i.e. including negative weights. We are interested whether there are spanning paths or loops of total negative weight. This kind of percolation problem is fundamentally different from conventional percolation problems, e.g. it does not exhibit transitivity, hence no simple definition of clusters, and several spanning paths/loops might coexist in the percolation regime at the same time. Furthermore, to study this percolation problem numerically, one has to perform a non-trivial transformation of the original graph and apply sophisticated matching algorithms. Using this approach, we study the corresponding percolation transitions on large square, hexagonal and cubic lattices for two types of disorder distributions and determine the critical exponents. The results show that negative-weight percolation is in a different universality class compared to conventional bond/site percolation. On the other hand, negative-weight percolation seems to be related to the ferromagnet/spin-glass transition of random-bond Ising systems, at least in two dimensions.Comment: v1: 4 pages, 4 figures; v2: 10 pages, 7 figures, added results, text and reference

    Universality-class dependence of energy distributions in spin glasses

    Get PDF
    We study the probability distribution function of the ground-state energies of the disordered one-dimensional Ising spin chain with power-law interactions using a combination of parallel tempering Monte Carlo and branch, cut, and price algorithms. By tuning the exponent of the power-law interactions we are able to scan several universality classes. Our results suggest that mean-field models have a non-Gaussian limiting distribution of the ground-state energies, whereas non-mean-field models have a Gaussian limiting distribution. We compare the results of the disordered one-dimensional Ising chain to results for a disordered two-leg ladder, for which large system sizes can be studied, and find a qualitative agreement between the disordered one-dimensional Ising chain in the short-range universality class and the disordered two-leg ladder. We show that the mean and the standard deviation of the ground-state energy distributions scale with a power of the system size. In the mean-field universality class the skewness does not follow a power-law behavior and converges to a nonzero constant value. The data for the Sherrington-Kirkpatrick model seem to be acceptably well fitted by a modified Gumbel distribution. Finally, we discuss the distribution of the internal energy of the Sherrington-Kirkpatrick model at finite temperatures and show that it behaves similar to the ground-state energy of the system if the temperature is smaller than the critical temperature.Comment: 15 pages, 20 figures, 1 tabl

    Low Energy Excitations in Spin Glasses from Exact Ground States

    Get PDF
    We investigate the nature of the low-energy, large-scale excitations in the three-dimensional Edwards-Anderson Ising spin glass with Gaussian couplings and free boundary conditions, by studying the response of the ground state to a coupling-dependent perturbation introduced previously. The ground states are determined exactly for system sizes up to 12^3 spins using a branch and cut algorithm. The data are consistent with a picture where the surface of the excitations is not space-filling, such as the droplet or the ``TNT'' picture, with only minimal corrections to scaling. When allowing for very large corrections to scaling, the data are also consistent with a picture with space-filling surfaces, such as replica symmetry breaking. The energy of the excitations scales with their size with a small exponent \theta', which is compatible with zero if we allow moderate corrections to scaling. We compare the results with data for periodic boundary conditions obtained with a genetic algorithm, and discuss the effects of different boundary conditions on corrections to scaling. Finally, we analyze the performance of our branch and cut algorithm, finding that it is correlated with the existence of large-scale,low-energy excitations.Comment: 18 Revtex pages, 16 eps figures. Text significantly expanded with more discussion of the numerical data. Fig.11 adde

    The ground state energy of the Edwards-Anderson spin glass model with a parallel tempering Monte Carlo algorithm

    Get PDF
    We study the efficiency of parallel tempering Monte Carlo technique for calculating true ground states of the Edwards-Anderson spin glass model. Bimodal and Gaussian bond distributions were considered in two and three-dimensional lattices. By a systematic analysis we find a simple formula to estimate the values of the parameters needed in the algorithm to find the GS with a fixed average probability. We also study the performance of the algorithm for single samples, quantifying the difference between samples where the GS is hard, or easy, to find. The GS energies we obtain are in good agreement with the values found in the literature. Our results show that the performance of the parallel tempering technique is comparable to more powerful heuristics developed to find the ground state of Ising spin glass systems.Comment: 30 pages, 17 figures. A new section added. Accepted for publication in Physica

    Fixed Linear Crossing Minimization by Reduction to the Maximum Cut Problem

    Get PDF
    Many real-life scheduling, routing and locating problems can be formulated as combinatorial optimization problems whose goal is to find a linear layout of an input graph in such a way that the number of edge crossings is minimized. In this paper, we study a restricted version of the linear layout problem where the order of vertices on the line is fixed, the so-called fixed linear crossing number problem (FLCNP). We show that this NP-hard problem can be reduced to the well-known maximum cut problem. The latter problem was intensively studied in the literature; practically efficient exact algorithms based on the branch-and-cut technique have been developed. By an experimental evaluation on a variety of graphs, we prove that using this reduction for solving FLCNP compares favorably to earlier branch-and-bound algorithms

    A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs

    Full text link
    We propose a fixed-parameter tractable algorithm for the \textsc{Max-Cut} problem on embedded 1-planar graphs parameterized by the crossing number kk of the given embedding. A graph is called 1-planar if it can be drawn in the plane with at most one crossing per edge. Our algorithm recursively reduces a 1-planar graph to at most 3k3^k planar graphs, using edge removal and node contraction. The \textsc{Max-Cut} problem is then solved on the planar graphs using established polynomial-time algorithms. We show that a maximum cut in the given 1-planar graph can be derived from the solutions for the planar graphs. Our algorithm computes a maximum cut in an embedded 1-planar graph with nn nodes and kk edge crossings in time O(3kn3/2logn)\mathcal{O}(3^k \cdot n^{3/2} \log n).Comment: conference version from IWOCA 201
    corecore